漂亮的加拿大一枝黄花为何成为“恶魔之花”******
近日,一热心网友在湖北省武汉市城市留言板留言发现一重要入侵物种加拿大一枝黄花,该市农业局迅速响应并妥善处理。
网友城市留言板留言及回复
(图片来源:网络)
党的二十大报告明确提出:“加强生物安全管理,防治外来物种侵害”。防治外来物种侵害,事关生物安全,受到各界关注。在深秋季节,我们常常可以在路边看到一种盛开黄花的植物,这种植物就是加拿大一枝黄花,看看下图中美丽的花朵,你能想象它被部分生态学家、植物学家们戏称为“生态杀手”“恶魔之花”吗?在原产地,加拿大一枝黄花是难得的兼具观赏和药用的植物。但是它们到我国成功定殖以后,逐渐衍变成“生态杀手”——“恶魔之花”。
加拿大一枝黄花
(图片来源:中国植物志)
如何识别加拿大一枝花?它从哪里来?
路遇小黄花,到底该如何认清它们呢?首先明确,咱们本土是存在一枝黄花的,而且有好几种,与加拿大一枝黄花同属。比如一枝黄花(Solidago decurrens)、钝苞一枝黄花(Solidago pacifica)、毛果一枝黄花(Solidago virgaurea)。这些都是无害的本土植物,我们不用挨个都分得明明白白,只需要搞清楚它们和加拿大一枝黄花的区别就行。
加拿大一枝黄花(学名:Solidago canadensis L.)是桔梗目菊科的植物,又名黄莺、麒麟草。多年生草本植物,有长根状茎。最高可达2.5米。叶披针形或线状披针形,长5-12厘米。头状花序很小(4-6毫米),在花序分枝上单面着生,多数弯曲的花序分枝与单面着生的头状花序,形成开展的圆锥状花序。总苞片线状披针形,长3-4毫米。边缘舌状花很短。
加拿大一枝黄花
(图片来源:中国植物志)
加拿大一枝黄花原产于北美,是美国东北部和加拿大分布最多的多年生草本植物,现已成为世界范围内的入侵植物。到目前为止,它已经蔓延到大多数欧洲国家、亚洲、澳大利亚、新西兰和其他地区。从山坡林地到沼泽地带均可生长,常见于城乡荒地、住宅旁、废弃地、厂区、山坡、河坡、免耕地、公路边、铁路沿线、农田边、绿化地带。
加拿大一枝花在世界各地的分布
(图片来源:Chemistry Biodiversity)
加拿大一枝黄花会造成哪些危害?
作为一种多年生草本园艺植物,加拿大一枝黄花自1935年作为观赏植物引入上海、南京等地以来,现于我国广泛分布。种子数量极多,种子萌发成活率高。它能在荒地或受干扰的环境中迅速形成幼苗种群,并迅速蔓延,成为一种常见杂草。例如,研究发现一个6株的小群体8年可以演变成1400余株的大种群。它们对众多生态系统(如农田、荒地、草地、森林等)具有显著的负面影响,据统计,一旦该植物成功入侵果园,可造成10%-30%的经济损失,苗圃5%-15%,蔬菜3%-15%,甚至可造成部分经济作物绝收。
路边的加拿大一枝花
(图片来源:网络)
加拿大一枝花的大规模生长也会导致了许多乡土物种的生态位和多样性的减少,对当地的农、林、牧、渔业及其相关产业造成了严重的负面影响。已成为威胁我国本土生物多样性和生态环境的重要因素之一。更为严重的是,它甚至会危害人类健康和社会经济;随着全球经济、国际贸易、旅游业和交通运输业的迅速发展和壮大,其危害也在不断加剧。因此,已被登记为目前中国最危险的外来入侵植物之一。
加拿大一枝花为何在入侵地难逢敌手?
加拿大一枝黄花有三个特点:第一,繁殖能力强,无性有性繁殖方式结合;第二,传播能力强,可以通过种子随风传播,也能通过根状茎横走传播;第三,生长期长,在其他秋季杂草枯萎或停止生长的时候,加拿大一枝黄花依然茂盛,花黄叶绿,而且地下根茎继续横走,不断吞食其他杂草的领地,而此时其他杂草已无力与之竞争。
这三个特点使得它对所到之处本土物种产生严重威胁,易成为单一的加拿大一枝黄花生长区,造成许多经济作物直接减产,此外,加拿大一枝黄花还可以释放化感物质抑制其他植物种子萌发和幼苗生长,对本土植物产生抑制作用,对生物多样性构成严重威胁。
伴随着全球经济一体化加速发展,全球外来物种入侵呈现快速增长趋势,但远未达到饱和状态,“这不仅是中国的现状,也是全世界的现状”。外来物种成功入侵往往需要引进、入侵、建立和传播等几个主要阶段,在各个阶段我们都可以建立保护措施。我们应当树立防范外来入侵物种,保护生物多样性的意识,不随意购买、放生动植物,共同成为生态文明的守护者!发现加拿大一枝黄花应及时向有关部门举报。
作者:陈晓童(湖北大学生命科学学院在读研究生)
科学性把关:徐乐天(湖北大学副教授、博士生导师)
我国空间新技术试验卫星第二批科学与技术成果发布******
记者从中科院微小卫星创新研究院获悉,我国“创新X”系列首发星——空间新技术试验卫星第二批科学与技术成果近日发布。这批成果主要包括获得我国首幅太阳过渡区图像、探测到迄今最亮的伽马射线暴、首次获得全球磁场勘测图等。
01
46.5nm极紫外成像仪获得我国首幅太阳过渡区图像
46.5nm极紫外太阳成像仪(SUTRI)是国际首台基于多层膜窄带滤光技术的46.5nm太阳成像仪,用于探测50万度左右的太阳过渡区(太阳色球与日冕之间的层次),由国家天文台联合北京大学、同济大学、西安光学精密机械研究所和微小卫星创新研究院共同研制。自2022年8月30日载荷开机以来已经获取了超过1.6TB的探测数据,成功实现了我国首次太阳过渡区探测。这也是人类近半个世纪来首次在46.5nm波段拍摄太阳的完整图像。SUTRI拍摄的图像清晰地显示了过渡区网络组织、活动区冕环系统、日珥和暗条、冕洞等结构(如图2),这些结构的观测特征表明,SUTRI拍摄的确实是从太阳低层大气往日冕过渡的结构,符合预期。SUTRI已探测到多个耀斑、喷流、日珥爆发和日冕物质抛射事件(如图3),表明其数据适合研究各种类型的太阳活动现象。此外,SUTRI还发现活动区普遍存在50万度左右的、朝向太阳表面的物质流动,这些流动在太阳大气的物质循环过程中占有重要地位。目前SUTRI一切功能正常,在轨测试和标定结束后,SUTRI观测的科学数据将向国内外太阳物理和空间天气同行全部开放。
△图1 “创新X”首发星——空间新技术试验卫星(SATech-01)
△图2 SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供)
△图3 SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供)
02
高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴
由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB 221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。
国家天文台和上海技术物理研究所研制的EP探路者龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。
△图4 高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。
03
国产量子磁力仪首次空间应用并获得全球磁场图
由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。
△图5 CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供)
△图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供)
△图7 NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供)
04
空间载荷、平台新技术成果丰富
由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。
△图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供)
由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。
△图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供)
中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。
△图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果
国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。
“科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。”
2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。
作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。
(总台央视记者 帅俊全 褚尔嘉)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |